15-819 Homotopy Type Theory Lecture Notes

نویسنده

  • Nathan Fulton
چکیده

Recall from previous lectures the definitions of functionality and transport. Functionality states that functions preserve identity; that is, domain elements equal in their type map to equal elements in the codomain. Transportation states the same for type families. Traditionally, this means that if a =A a′, then B[a] true iff B[a′] true. In proof-relevant mathematics, this logical equivalence is generalized to a statement about identity in the family: if a =A a′, then B[a] =B B[a′]. Transportation can be thought of in terms of functional extensionality. Unfortunately, extensionality fails in ITT. One way to recover extensionality, which comports with traditional mathematics, is to reduce all identity to reflexivity. This approach, called Extensional Type theory (ETT), provides a natural setting for set-level mathematics. The HoTT perspective on ETT is that the path structure of types need not be limited to that of strict sets. The richer path structure of an ∞-groupoid is induced by the induction principle for identity types. Finding a type-theoretic description of this behavior (that is, introduction, elimination and computation rules which comport with Gentzen’s Inversion Principle) is an open problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

15 - 819 Homotopy Type Theory Lecture Notes

These notes summarize the lectures on homotopy type theory (HoTT) given by Professor Robert Harper on September 9 and 11, 2013, at CMU. They start by providing a introduction to HoTT, capturing its main ideas and its connection to other related type theories. Then they present intuitionistic propositional logic (IPL), giving both an proof-theoretic formulation as well an order-theoretic formula...

متن کامل

15 - 819 Homotopy Type Theory Lecture

These notes summarize the lectures on homotopy type theory (HoTT) given by Professor Robert Harper on September 9 and 11, 2013, at CMU. They start by providing a introduction to HoTT, capturing its main ideas and its connection to other related type theories. Then they present intuitionistic propositional logic (IPL), giving both an proof-theoretic formulation as well an order-theoretic formula...

متن کامل

Homotopy Type Theory: Univalent Foundations of Mathematics

These lecture notes are based on and partly contain material from the HoTT book and are licensed under Creative Commons Attribution-ShareAlike 3.0.

متن کامل

Lecture Notes on Cubical sets

These are some lecture notes for a course presenting the cubical set model of type theory, first in Copenhagen, December 2014, and then in Paris, February 2015. We describe a particular presheaf model of type theory. This description can also be seen as an operational semantics of a purely syntactical type system. It involves a nominal extension of λ-calculus. We use a generalization of the Kan...

متن کامل

Lecture Notes on Cubical sets

These are some lecture notes for a course presenting the cubical set model of type theory, first in Copenhagen, December 2014, and then in Paris, February 2015. We describe a particular presheaf model of type theory. This description can also be seen as an operational semantics of a purely syntactical type system. It involves a nominal extension of λ-calculus. We use a generalization of the Kan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014